The Influence of Tree Phenology on Neotropical Migrant Birds in Southwestern North America: Implications for SRER and WGEW

RISE Presentation, 3 October 2009

Charles van Riper III, Joseph Fontaine, Susan Skagen, and Jherime Kellermann
Nashville warbler

- Foraging constrains most severe while migrating (Moore and Aborn 2000)

- Selective pressures to minimize time spent on route (Linderstrom 1995)

Graphic design: Kristina Ecton Data: Dunn and Garrett (1997)
Lower Colorado River Today

40,000 hectares left of 180,000 ha of riparian vegetation
- 75% reduction in one century
- Climate change will further influence this total

Urbanization

Agriculture Conversion & River Regulation

Anderson and Ohmart 1984 & Younker and Anderson 1986
What landscape feature is selected?
Que caracteristica del paisaje seleccionan?
Elevational Gradient – Vegetation Zones

Montane conifer

Pine/Pine-oak

Oak/Oak-juniper

Riparian

Mesquite
Methods

Point counts
Mist netting
Foraging Observations
Invertebrate Sampling
Vegetation sampling
Tree Phenology
Radio and Isotopes
Habitat Selection is Hierarchical
(Johnson 1980, Hutto 1985, Carlsile et al 2009)

Timing of arrivals at stopover sites are related to Weather Patterns and location of Breeding Grounds

Landscape features Selected

Patch choice

Microhabitat

Modified Hutto 1985
Food availability is the most important factor in habitat selection for migrating birds (Hutto 1985)

Hypothesis:
Phenology of Specific Tree Species serve as food targets for migrant birds
Tree Phenology as Related to Bird Numbers

Timing: Migrant Arrivals Correlates with Honey Mesquite Peak Flowering (2002-5)
Patch level: Relative abundance of Available Trees

Available

- Gooding's Willow
- Tamarisk
- Honey Mesquite
- Fremont Cottonwood
- Screwbean Mesquite

0% 20% 40% 60% 80% 100%
Patch level: Migrant Birds Select Honey Mesquite

- Gooding's Willow
- Tamarisk
- Honey Mesquite
- Fremont Cottonwood
- Screwbean Mesquite

NAWA ($x^2_3 = 38.542, p < 0.0001$)
OCWA ($x^2_3 = 26.194, p < 0.0001$)
WIWA ($x^2_3 = 48.524, p < 0.0001$)
Foliage Invertebrates on Riparian Tree Species

Native Habitat vs. Non-Native Habitat

Native Habitat
- Cottonwood
- Honey
- Screwbean

Non-Native Habitat
- Mesquite
- Willow
- Tamarisk

p < .001
Microhabitat level: Arthropod Abundance and Richness Greatest on Heavy Flowering Trees

Mean number of individuals per sample

Abundance

Richness

F_{4, 150} = 6.426, p < 0.00

F_{4, 150} = 31.168, p < 0.000
Microhabitat Choices: Paired Tree Treatments

Naturally Occurring Pairs
Heavy Flowering vs. Light
N = 49

Flower Removal Pairs
Heavy Flowering vs. Flowers Removed
N = 34

1) VISITATION RATE
Microhabitat level: Foraging Behavior at Paired Trees Shows Flower Selection

Visit Rate

Z = -3.055, p = 0.002
Z = -3.082, p = 0.002

Mean # of Birds/15 min.

- Heavy Flowering
- Light/No Flowering

Natural Pairs
n = 49 pairs

Experimental Pairs
n = 34 pairs
Does plant phenology drive avian migratory routes and timing?

- Similar latitude
- Similar tree communities
- Differ in elevation

Colorado River
33.4N
60m

Santa Cruz River
31.5N
945m

San Pedro River
31.5N
1280m

Mesquite
Cottonwood
Tamarisk
Elevation delays tree phenology

~2.5 weeks later
Santa Cruz River 945m

~4 weeks later
San Pedro River 1280m

Colorado River 60m

Graph showing the phenology of all species over different months (March, April, May) and different elevations (Colorado River 60m, Santa Cruz River 945m, San Pedro River 1280m).
Elevation delays timing of migration

Birds arrive 1-2 weeks earlier than phenology would predict on Colorado River 85 m elevation.

~1 week later
Santa Cruz River 945m

~1 week later
San Pedro River 1280m
Elevational Gradient – Vegetation Zones

Montane conifer Pine/Pine-oak Oak/Oak-juniper
Santa Rita Experimental Range
CONCLUSIONS

- Neotropical migrant warbler species arrive from Mexico to Southwestern stopover sites (like WGEW and SRER) at different times, but all within the time when flowering trees (e.g., honey mesquite) are at peak bloom. Climate change will disrupt this.

- Birds initially key on large-scale habitat features to select stopover sites, then refine their choices to patch and individual trees within that patch, all influenced by tree phenology.

- While at a stop-over site, neotropical migrant warblers forage primarily on tree species that are in flower and host significantly more insects than other riparian tree species. Climate change will influence this.
CONCLUSIONS (cont’d)

• If the temporal aspects of plant phenology will be altered with climate change, spring neotropical migrant warblers will be greatly influenced by changing tree phenology as plants in the southwest along the migration corridor, and on the breeding grounds, are differentially influenced by changes in climate and weather patterns.

• Areas like the USDA-ARS Walnut Gulch Experimental Watershed (WGEW) and the University of Arizona Santa Rita Experimental Range (SRER), will become even more important as stop-over locations for neotropical migrant birds.
IN SUMMARY:

Plant Phenology has a Major Influence on Migrating Southwestern Birds: WGEW and SRER will Play an important role as stop-over habitats.
Migratory birds experience differences in climate change among spring migration, breeding, and fall migration locations. After accounting for when birds are present at breeding versus migratory locations, climate change differed significantly between habitat categories, with birds experiencing relatively wetter breeding locations (a) and warmer spring migration locations (b). Columns denoted by different letters are significantly different at the 0.05 level according to an LSD post-hoc test.
Microhabitat level:
Foraging Behavior at Paired Trees Shows Flower Selection

- **Experimental Pairs**: n = 34 pairs
- **Natural Pairs**: n = 49 pairs

Length of Stay

- **Heavy Flowering**
- **Light/No Flowering**

- **Z = -3.000, p = 0.003**
- **Z = -1.931, p = 0.053**
Microhabitat level:
Foraging Behavior at Paired Trees Shows Flower Selection

Experimental Pairs: n = 34 pairs
Natural Pairs: n = 49 pairs

- Heavy Flowering
- Light/No Flowering

Mean Attack Ratio

- Z = -3.380, p = 0.001
- Z = -2.045, p = 0.041
• Tree phenology influences patterns of avian migration throughout the Southwest

AND,

• Differences in migration patterns among sites are not as extreme as we would predict based on tree phenology alone (e.g., temporal constraints on reaching the breeding grounds)
On the Colorado River, avian diversity and abundance mirrors Honey Mesquite flowering

- **Diversity**: $F_{1,26} = 18.447$, $p < 0.001$
- **Abundance**: $F_{1,26} = 9.622$, $p = 0.006$
STOP HERE!!
ALL YOU CAN EAT
CATERPILLARS

Michael Hallworth
Chris O’Bien
Kristina Paxton
Brooke Gebow
Laura McGrath
But how general are these patterns?
Does Tree Phenology Influence Spring Migrating Insectivorous Birds?

Honey Mesquite high flower

Honey Mesquite low flower
Warbler abundance and flower phenology on Tamarisk and Honey Mesquite
Changes in temperature but not precipitation show a clear seasonal trend. Western North America experienced increasing precipitation (a), but with the exception of May the change did not differ across months or show any predictable seasonal pattern ($r^2 = 0.001$). Minimum temperature also increased (b), but in contrast to precipitation, temperature changes showed a clear seasonal decline ($r^2 = 0.196$). Columns denoted by different letters are significantly different at the 0.05 level according to an LSD post-hoc test.
Changes in temperature but not precipitation vary with latitude and elevation.

Changes in precipitation for Western North America are consistent across (a) latitudes ($r^2 = 0.002$) and (b) elevations ($r^2 = 0.001$); but changes in minimum temperature are more extreme at (c) higher latitudes ($r^2 = 0.111$) and (d) lower elevations ($r^2 = 0.085$). Elevations were natural-log transformed to correct for higher variance at lower elevations. For visual simplicity data presented here represent mean changes for the months of March-September for the years 1954-2006.