A RADARSAT-2 Quad-Polarized Time Series for Monitoring Crop and Soil Conditions in Barrax, Spain

M. Susan Moran, Luis Alonso, Jose F. Moreno, Maria Pilar Cendrero Mateo, D. Fernando de la Cruz, and Amelia Montoro

Abstract—An analysis of the sensitivity of synthetic aperture radar (SAR) backscatter (σ^0) to crop and soil conditions was conducted using 57 RADARSAT-2 C-band quad-polarized SAR images acquired from April to September 2009 for large fields of wheat, barley, oat, corn, onion, and alfalfa in Barrax, Spain. Preliminary results showed that the cross-polarized σ_{HV}^0, was particularly useful for monitoring both crop and soil conditions and was the least sensitive to differences in beam incidence angle. The greatest separability of barley, corn, and onion occurred in spring after the barley had been harvested or in the narrow time window associated with grain crop heading when corn and onion were still immature. The time series of σ^0 offered reliable information about crop growth stage, such as jointing and heading in grain crops and leaf growth and reproduction in corn and onion. There was a positive correlation between σ^0 and the Normalized Difference Vegetation Index for onion and corn but not for all crops, and the impact of view direction and incidence angle on the time series was minimal compared to the signal response to crop and soil conditions. Related to planning for future C-band SAR missions, we found that quad-polarization with image acquisition frequency from 3–6 days was best suited for distinguishing crop types and for monitoring crop phenology, single- or dual-polarization with an acquisition frequency of 3–6 days was sufficient for mapping crop green biomass, and single- or dual-polarization with daily image acquisition was necessary to capture rapid changes in soil moisture condition.

Index Terms—Barley, corn, onion, phenology, Radarsat, Rapid-eye, Sentinel-1.

I. INTRODUCTION

It has long been recognized that satellite imagery has a unique and important role in monitoring crop and soil conditions for farm management [27]. Most studies of satellite imagery for crop monitoring have focused on the use of optical imagery using the reflectance of visible and NIR radiation (wavelength (λ) \sim 0.4–1.1 µm) and the emittance of thermal IR radiation (λ \sim 8–12 µm) to map characteristics over large areas [24]. However, longer microwave wavelengths (λ \sim 1.7–30 cm) have some important advantages over optical remote sensing for agricultural applications. Perhaps the most valuable advantage is the ability of the microwave signal to pass through the atmosphere and clouds with negligible attenuation, thus allowing frequent repeat measurements over the short dynamic growing season of crops. Recent satellites supporting synthetic aperture radar (SAR) sensors offer the added advantages of fine resolution (on the order of 10 m), day and night coverage, multiple polarimetric modes, variety of beam incidence angles, and acquisitions to either the left or right of the satellite track. The RADARSAT-2 satellite system with C-band SAR (λ \sim 5.5 cm) offers all of these specifications (Table I; [44]). For these reasons, there is great interest in using RADARSAT-2 for research on application of SAR imagery for determining crop and soil condition, including monitoring crop biomass, leaf area, crop residue, plant water content, crop growth stage, soil tillage, and soil water content [11], [35]. However, even with the availability of RADARSAT-2 images, research will be constrained by the common disadvantages of satellite measurements of radar backscatter. Although SAR imagery is acquired at fine resolution, it requires a correction for inherent speckle that often results in operational resolution on the order of hundreds rather than tens of meters [59]. Thus, cropped fields must be large (on the order of 1 km2) to match the coarse spatial resolution of speckle-corrected SAR data. Studies designed to track crop conditions based on frequent RADARSAT-2 SAR acquisitions will be faced with the challenge of disentangling the signal associated with different sensor view directions and beam incidence angles from that associated with day-to-day changes in crop/soil conditions. Thus, to arrive at conclusive results, studies must be designed to include intensive ground-based measurements of multiple crops and soils. Finally, total radar backscatter is a complex sum of the backscatter from vegetation and soil, where
The radar beam can penetrate both the canopy and soil to a difficult-to-determine depth, making it complicated to determine if the signal is dominated by the crop or soil conditions. Again, reliable ground measurements of crop growth stage and daily irrigation and precipitation throughout the growing season are key to a successful investigation.

Because of these constraints, there have been few studies with a dense time series of radar backscatter measurements over multiple crops throughout the growing season with sufficient in situ crop and soil measurements to interpret the results for farm management. Most studies are based on interpretation of <15 satellite images taken with the same sensor configuration over the growing season [5]–[8], [32], [53], [61], [65]. Ground measurements of crop and soil conditions are often lacking in such regional studies, and the focus is generally on mapping crop type rather than condition. Excellent studies have been conducted with ground-based boom-mounted radar scatterometers deployed to make daily measurements over a single crop through the growing season (e.g., [34], [46], and [62]). Unfortunately, such ground-based systems are rare (due to the high cost of the system and its deployment), and they are generally limited to local deployment with measurements over few crop types per year. Nonetheless, these rich season-long data sets of multiband, multipoarized, and multitemporal measurements have provided our general understanding of radar backscattering from crops and soils and have been the basis for nearly all radar backscatter modeling. However, we are still uncertain of the effects of polarization, frequency, incidence angle, and view direction as a function of crop type, density, and development stage [23].

Generally, we know that a dense time series of linear quad-polarized images would increase the dimensionality of the radar data set and improve our ability to monitor both crop and soil conditions. Regarding crop type separability, a time series of C-band radar images has produced results more accurate than those obtained with a single C-band radar image [7], [16], [19], [26], [52], [54], [58], [65]. Fewer images are required if the image acquisition is synchronized with the crop calendar [6], [12], [28], [37], [52]. The differential attenuation of grain crops in linearly copolarized response (HH versus VV) and the ratio (or difference) of the copolarized radar backscatter $\sigma_{HH}^o/\sigma_{HH}^c$ (or $\sigma_{VV}^o - \sigma_{HH}^o$) have been reported to be useful for discriminating grain crops [64]. However, in other crops (and some growth stages of grain crops), σ_{VV}^o and σ_{HH}^o are well correlated [3], and it has also been reported that the cross-polarization radar backscatter σ_{HV}^c was superior to copolarization for crop type separability [14], [18] in part because σ_{HV}^c had the highest dynamic range. Theoretically, grain crops with vertical stem structure lead to double bounce and high σ_{VV}^o; however, their leaves attenuate double bounce and result in more diffuse scatter, like randomly structured crops (e.g., alfalfa). In summary, studies have found that inclusion of multipolarization and multitemporal data improves crop classification, although specific results varied [19], [22], [40], [56], [65].

Regarding crop stage and yield, different polarizations may be most sensitive to crop development at different crop stages, e.g., [29] reported that σ_{HH}^c and σ_{VV}^c were sensitive to different crop conditions in the booting stages of wheat. The linear cross-polarization σ_{HV}^c has been reported to provide the greatest contrast between zones of high and low productivities [3], [35]. Radar signal tends to increase quickly with increasing crop height (biomass) until a threshold height—which depends on crop type, radar polarization, and beam incidence angle—after which the signal increases only slightly [3]. Ferrazzoli et al. [21] found that this increase was associated with biomass increases from 0 to 2 kg/m² in small-stem crops such as alfalfa. These results are complicated by the fact that the radar signal from freshly ploughed fields with rough soil surfaces can be on the same order as that of mature crops [3]. Like crop classification, results are best when the timing of the image acquisition coincides with critical crop growth phases in the cycle, such as seedling emergence and canopy closure [51]. This is particularly important because the dynamic range related to plant growth is reportedly small, e.g., 8 dB for rice [50] and only 3 dB for potato [48]. With proper timing, SAR images can provide information related to crop yield. McNairn and Brisco
[35] reported that σ_{HV}^2 was responsive to zones of higher grain productivity if the image was acquired just weeks prior to crop harvest. They hypothesized that this higher backscatter was due to sensitivity to greater volumetric moisture in the wheat heads.

A time series of linearly quad-polarized images has advantages for mapping soil moisture content as well. The trends in radar backscatter measured on different dates can be correlated with soil moisture content since the effects of spatial roughness variations are smoothed [42], [47], [60]. Balenzano et al. [4] reported that a ratio of backscatter measured on two close successive dates might be a simple and effective way to decouple the effect of vegetation and surface roughness from the effect of soil moisture changes when volumetric scattering by the crop canopy is not dominant. While most satellite-based SAR systems are designed to map soil moisture with copolarizations HH or VV, some studies have suggested that cross-polarization could be more sensitive to soil moisture variations [25], [35].

Regarding the inclusion of different sensor configurations (i.e., view direction and incidence angle) in a dense image time series, it is generally accepted that shallow incidence angles ($\theta_i > 40^\circ$) increase the pathlength through vegetation and maximize the response to crop conditions [3], [9], [15], [17]. Steep incidence angles ($\theta_i < 30^\circ$) are more useful for soil moisture measurement because they decrease the effects of soil roughness and vegetation attenuation [33]. It has been reported that small changes in incidence angle can have strong impacts on radar backscatter [5] and that a variation with incidence angle was most pronounced in the early season when the backscatter was dominated by surface scattering [55]. The rise in backscatter associated with beam incidence angle can be on the order of several decibels [51]. Radar look direction is also important, particularly relative to row direction. The backscatter from a field viewed with the look direction perpendicular to the row direction can be 5–10 dB higher than the look directions just 5°–15° off perpendicular [13], [41] and can be up to 20 dB in extreme cases [50]. Some studies have reported that the sensitivity to radar look direction effects may be reduced or eliminated for linear cross-polarizations [13], [36].

In this paper, a dense time series of RADARSAT-2 images was acquired over a growing season in a well-instrumented agricultural region coincident with intensive monitoring of crop growth stage, precipitation, and irrigation. The main objective of this paper was to analyze a time series of RADARSAT-2 quad-polarized data to define and quantify the performance of Sentinel-1 and other future European Space Agency (ESA) C-band SAR missions for classifying and monitoring agricultural crops. Multiple university and agency investigators joined to conduct the ESA AgriSAR campaign, where AgriSAR stands for “Agricultural bio/geophysical retrieval from frequent repeat pass SAR and optical imaging” [23]. In 2009, AgriSAR field campaigns were conducted at three locations: Barrax, Spain; Flevoland, The Netherlands; and Indian Head, SK, Canada. In the Barrax region in La Mancha, Spain, 57 RADARSAT-2 C-band quad-polarized SAR images and five RapidEye four-band optical images were acquired from April to September 2009, covering multiple large fields of irrigated and nonirrigated crops. An analysis of the sensitivity of SAR backscatter to crop and soil conditions was conducted using the entire multiview quad-polarized image time series for large fields of corn, barley, wheat, onion, oats, and alfalfa in Barrax. Based on this analysis, suggestions were made for planning the image acquisition frequency and polarimetric mode for the Sentinel-1 mission.

II. METHODS

A. Field Site and Ground Measurements

The field campaign was carried out at the Barrax test site and surrounding area. Barrax is located in southeastern Spain on the La Mancha plateau, situated 20 km west of the town of Albacete and about 200 km southeast of the Spanish capital Madrid (centered on 580133.1E 4324867.0N UTM, Zone 30, and Datum WGS84). The test site and surrounding agricultural fields are at an elevation of 700 m, with differences in elevation ranging up to only 2 m. The regional water table is about 20–30 m below the land surface. The Mediterranean climatic conditions result in annual rainfall averages of about 320 mm, with high precipitation in spring and autumn and a minimum in summer. The Barrax test site and surrounding area have been used for agricultural research for many years and are characterized by large uniform land-use units, with some fields measuring 1 km in diameter (Fig. 1). The region consists of approximately 65% dry land and 35% irrigated land, where the main irrigated crops are alfalfa, barley, corn, onion, sugar beet, sunflower, and wheat, and the main means of irrigation are circular pivot sprinkler systems.

Throughout the AgriSAR experiment, records were kept on meteorological conditions, including measurements of air temperature, wind speed and direction, relative humidity (at 2- and 10-m heights), incident and net solar radiation, and reference evapotranspiration (ET_o) in an irrigated field of festuca grass located centrally in the Barrax test site. Meteorological measurements were made by all sensors every 30 s and stored every 10 min. Precipitation amounts were recorded by event start time and duration and also reported as a daily value (P_D in millimeters per day).

Records of irrigation depth (in millimeters per day) applied to cropped fields were kept on a daily basis (D). The daily ET_{oD} (in millimeters per day) was measured with a weighing lysimeter of size $2.7 \text{ m} \times 2.3 \text{ m} \times 1.7 \text{ m}$ deep (as described in detail in [30]), and crop coefficients (k_c) were computed according to Doorenbos and Pruitt [20], deriving field-specific daily consumptive water use (or daily evapotranspiration ET_D), where $ET_D = ET_{oD}k_c$ [1]. A simple field water replenishment estimate for the growing season was computed as $(I_S + P_S)/(ET_S)$, where I_S, P_S, and ET_S are the seasonal sums of I_D, P_D, and ET_D, and the season is defined as the period from field planting to harvest. Thus, a value of 1.0 estimates a seasonal water replenishment close to 100% (Table III).

Beginning in July of the AgriSAR campaign, measurements were made in 23 plots of crop biophysical parameters, including seed density, crop height, and “shadowing area” (plant diameter). For fields both within and surrounding the Barrax test
Fig. 1. Location map of the Barrax test site (upper) overlain on a Landsat image, where the red rectangles illustrate the coverage of RADARSAT-2 ascending and descending images at eight different beam incidence angles, the yellow rectangles represent RapidEye coverage, the green circle is the general area of interest, and the black box delineates the Barrax test site for AgriSAR 2009. Map of crop types (lower) in the Barrax study area in June 2009 overlain on Landsat and Quickbird images.

site, crop phenologic stage was recorded, including seedling size, plant development, reproduction stage, and maturation (Table III). Crop type was recorded for all fields in the Barrax region in 2009, resulting in an inventory including alfalfa, barley, corn, festuca grass, fruit tree, garlic, oat, onion, potato, sunflower, and wheat (Fig. 1).
B. Image Processing—RADARSAT-2 and RapidEye

Using ascending and descending RADARSAT-2 orbits and beam incidence angles ranging from 23° to 41°, SAR images were acquired on average every 3 days during the AgriSAR experiment from May to August (Fig. 2 and Table II). Ascending (6 P.M.) and descending (6 A.M.) pass acquisitions occurred 12 h apart on consecutive days. For the AgriSAR experiment, RADARSAT-2 fine-quad mode images were resampled to images of backscatter (in decibels) with 20-m spatial resolution and polarizations of HH, HV, and VV under the conventional assumption that HV and VH backscatter would be similar. The RADARSAT-2 absolute radiometric error (average radiometric level offset relative to an outside reference) is reported to be 0.25 dB, and the relative radiometric error (total radiometric level variations within an image) is reported to be $<0.6 \text{ dB}$ [57].

RapidEye images were acquired on multiple dates during the AgriSAR campaign, and five RapidEye images acquired with clear sky conditions were processed for this analysis. An image of Normalized Difference Vegetation Index (NDVI) was derived from the RapidEye five-band imagery, where $NDVI = (L_{\text{NIR}} - L_{\text{Red}})/(L_{\text{NIR}} + L_{\text{Red}})$, $L =$ radiance (in watts per meter steradian micrometer) measured by the calibrated RapidEye sensor, and subscripts Red and NIR refer to RapidEye red (0.63–0.685 μm) and near-infrared (0.76–0.85 μm) wavelength bands. RapidEye imagery was obtained during the AgriSAR campaign for the sole purpose of validating SAR-derived information.

The 5-m resolution RapidEye images were registered to an orthoregistered photo, and subsequently, the RADARSAT-2 images were registered to this georegistered RapidEye image with a second-order fit to within 20-m accuracy. To minimize SAR speckle and to maximize the signal/noise ratio, RADARSAT-2 backscatter was averaged over polygons corresponding to fields of alfalfa, barley, corn, onion, oat, and wheat (Table III). The number of pixels averaged for these polygons ranged from 124 for the smallest field to 1096 for the largest field, related to field sizes from 0.05 to 0.5 km2. These field sizes correspond well with the optimal ground resolution suggested by [59] for parameter retrieval from SAR images. RapidEye NDVI was averaged over the same polygons on the five dates of RapidEye acquisitions.

These 12 field-scale extracts covering six crops from RADARSAT-2 and RapidEye images formed the data set analyzed in this paper. Although the data for all 12 fields were not reported in the figures to reduce redundancy and to simplify presentation, the results for all 12 fields contributed to the analysis and were consistent with the conclusion.

C. Correlation Analysis for Evaluating Image Acquisition Frequency

To evaluate the similarity in information content between different acquisition frequencies, we computed the correlation coefficient (R^2) between a spline fit of σ^o values measured with an average n-day frequency with a spline fit of σ^o_{HV} values with an average m-day frequency over a given time period for multiple crops. This approach deserves some explanation here to allow proper interpretation in the results section. First, we refer to “average n-day frequency” because the acquisitions are not on a regular n-day frequency (varying 2–3 days from a regular n-day interval) over the study period (see Table II). In this analysis, care was taken to select satellite/sensor configurations that best mimicked a regular n-day frequency (Table IV). Second, because the images were necessarily acquired on different days (Table II), the time periods used for the analysis of n-day frequency varied slightly (Table IV). Thus, the results of the analysis assessed changes in image acquisition frequency as well as image acquisition timing. This was advantageous since both the number and timing of image acquisitions should be considered in planning the image acquisition frequency for new satellite missions. Finally, the analysis for the alfalfa field differed from all others because the field was not covered by the RADARSAT-2 images acquired with $\theta_i = 40^\circ$ or 41°. These aspects of the analysis have been noted and accommodated in the results and discussion.

III. RESULTS AND DISCUSSION

Trends in σ^o over the crop growing season at Barrax were defined by crop type, phenology, irrigation, and precipitation (exemplified by σ^o from fields of barley, corn, and onion in Fig. 3). The highest σ^o at all polarizations was associated with the period in which the crop green biomass generally reaches its maximum for the winter-crop barley (irrigated from day of year DOY 71–179) and the summer-crops corn (irrigated DOY 153–261) and onion (irrigated DOY 68–244). Changes in plant structure associated with crop growth and harvest dictated the overall trend in σ^o, where σ^o was lowest during periods when fields were bare or sparsely vegetated, σ^o increased sharply during crop green-up or decreased abruptly with harvest, and σ^o reached a plateau during crop reproduction. Differences in sensor configuration (orbit and beam incidence angle) had a

![Fig. 2: Sample images of RADARSAT-2 (HH, HV, VV, and RGB) and RapidEye (color composite) in May and August 2009 for an area extracted over the fields in Barrax. The photographs of corn and barley were taken on the ground in July 2009.](image-url)
secondary influence on the overall trend and generally resulted in small differences in σ^o relative to the soil/plant-related seasonal trends. Differences in linear co- and cross-polarized radar backscatter appeared to be related to different sensitivities to crop and soil conditions that are explored in the following sections.

A. Crop Condition

Results confirmed that cross-polarized σ_{HV}^o at shallow incidence angles ($\theta_i > 35^\circ$) was more sensitive than σ_{HH}^o to the changes in vegetation structure associated with crop seasonal growth and harvest [Fig. 4(a) and (b)]. The dynamic range of σ_{HV}^o for barley, corn, and onion (11, 9, and 16 dB, respectively) over the growing season was substantially greater than that for σ_{HH}^o (7, 7, and 10 dB). The increase of σ_{HV}^o associated with increased vegetative material in corn and onion fields has been attributed to the depolarizing effect of volumetric scattering within a crop canopy. The highest values of σ_{HV}^o were associated with the densest vegetation canopy for each crop, i.e., during tasseling for corn and bulb growth for onion. The general increase in σ^o associated with corn leaf growth in

<table>
<thead>
<tr>
<th>Crop Type & Field Name</th>
<th>Field Centroid (UTM)</th>
<th>Seed Density (plants/m²)</th>
<th># of Pixels Averaged</th>
<th>Row Direction</th>
<th>Seasonal Water Replenishment Estimate (unitless, defined in text)</th>
<th>Irrigation Schedule</th>
<th>Phenologic Stage</th>
<th>Plant Ht.</th>
<th>Plant Diameter</th>
<th>Dry Matter & Water Content (kg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa1</td>
<td>573503E, 4325032N</td>
<td>555</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barley1</td>
<td>578443E, 4322912N</td>
<td>308</td>
<td>1023</td>
<td>NNW-SSE</td>
<td>71-179</td>
<td>60-182</td>
<td>172-173</td>
<td>172-173</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barley2</td>
<td>573923E, 4321812N</td>
<td>153</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corn1</td>
<td>578283E, 4323692N</td>
<td>8</td>
<td>1096</td>
<td>N-S</td>
<td>0.99</td>
<td>133-261</td>
<td>143-264</td>
<td>172 & 188</td>
<td>188</td>
<td>172</td>
</tr>
<tr>
<td>Corn2</td>
<td>576663E, 4324492N</td>
<td>10</td>
<td>571</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onion1</td>
<td>579063E, 4323192N</td>
<td>40</td>
<td>217</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onion2</td>
<td>577843E, 4324652N</td>
<td>40</td>
<td>124</td>
<td>NE-SW</td>
<td>0.84</td>
<td>72-236</td>
<td>89-235</td>
<td>188</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>Onion3</td>
<td>578583E, 4324532N</td>
<td>40</td>
<td>234</td>
<td></td>
<td>0.85</td>
<td>68-244</td>
<td>89-235</td>
<td>188</td>
<td>188</td>
<td></td>
</tr>
<tr>
<td>Oat1</td>
<td>579023E, 4323232N</td>
<td>40</td>
<td>247</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oat2</td>
<td>577823E, 4324612N</td>
<td>281</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat1</td>
<td>574043E, 4322192N</td>
<td>347</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wheat2</td>
<td>578623E, 4324512N</td>
<td>523</td>
<td>694</td>
<td>SSW-NNE</td>
<td>0.58</td>
<td>74-187</td>
<td>74-196</td>
<td>171</td>
<td>172</td>
<td></td>
</tr>
</tbody>
</table>
both polarizations may conflict with previous studies reporting no correlation between crop vigor and σ^o for corn [37]. The σ^o_{HV} response for barley was complicated by unique vertical structural characteristics associated with jointing that resulted in an attenuation of the signal in σ^o_{HV} (and σ^o_{VV}) during the period when vegetative material was increasing at a steady rate (as discussed further in the next paragraph). The difference $\sigma^o_{VV} - \sigma^o_{HH}$ was particularly sensitive to the vegetation structure of the grain crop barley. During jointing (when the stem begins to elongate), $\sigma^o_{VV} - \sigma^o_{HH}$ became steadily more negative as the σ^o_{VV} signal decreased more than σ^o_{HH} due likely due to signal attenuation with the vertical stem structure of immature grain crops. The dynamic range of $\sigma^o_{VV} - \sigma^o_{HH}$ in this barley field was 9 dB from crop emergence.
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Fig. 4. Radar backscatter values in HH, HV, and VV-HH polarizations for three crops—barley, onion, and corn. The symbols represent the radar backscatter values for measurements made with ascending and descending orbits with beam incidence angles $>35^\circ$. The crop growth stage is represented with text at the bottom frame of the figure. The dynamic ranges for each crop and polarization are given at the upper left corner of each figure, with abbreviations Barley1 ($\Delta B1$), Corn1 ($\Delta C1$), and Onion3 ($\Delta N3$).

through leaf jointing. This $\sigma_{VV}^o - \sigma_{HH}^o$ difference grew smaller (closer to zero) during barley heading and grain filling. There was a similar but less dramatic change in $\sigma_{VV}^o - \sigma_{HH}^o$ associated with leaf growth in corn and onion (dynamic range is 4 dB) and a similar steady decrease in $\sigma_{VV}^o - \sigma_{HH}^o$ with corn tasseling and onion bulb growth.

These distinctive sensitivities of σ^o to vegetation structure should be useful for crop type separability. Other studies have suggested that separability of crop types is best at or near the heading of spring grains and diminishes after the grains have headed and begun to ripen [14], [55]. This is certainly true for separating Barrax barley from corn and onion fields but only when using the $\sigma_{VV}^o - \sigma_{HH}^o$ difference [Fig. 4(c)]. We found that there was a distinctive peak in $\sigma_{VV}^o - \sigma_{HH}^o$ associated with heading in barley (in wheat and oat as well but not shown here) that helped distinguish grain crops from more randomly structured crops such as onion and alfalfa. However, as shown in Fig. 4(c), the results will be most accurate if the image was acquired in the narrow time window associated with crop heading. With single polarizations of σ_{HH}^o or σ_{VV}^o, the greatest separability of barley versus corn and onion occurred in summer after the barley had been harvested [Fig. 4(a) and (b)]. This separability is explained by the dominance of surface scattering for harvested winter crops and volume scattering for lush summer crops.

The relation between σ_{HV}^o and crop vegetative growth can be illustrated by comparison of RADARSAT σ_{HV}^o with the RapidEye NDVI. Soil moisture and roughness reportedly have little effect on σ^o during the leaf development period [49], [63], and thus, σ^o has been reported to be a surrogate for crop green biomass and to have a strong correlation with NDVI [10], [43], [49]. For corn and onion, there was a striking trend for both σ_{HV}^o and NDVI to increase with crop growth [Fig. 5(b) and (c)]. As expected, the NDVI was near zero when the field was fallow or the crop had senesced, the NDVI increased rapidly during stages of green vegetation growth, and the NDVI remained relatively stable during crop reproduction such as barley and corn grain filling and onion bulb ripening. The percentage increase in radar backscatter was on the same order as the percentage increase in NDVI [3]. However, because σ_{HV}^o is equally sensitive to leaf water content and canopy structure, its behavior was, at times, different from NDVI. For example, when barley was jointing (stem elongation, as discussed earlier) or producing grain, σ_{HV}^o decreased and peaked, respectively, despite a little change in NDVI (or vegetation biomass) as- sociated with these phenologic stages [Fig. 5(a)]. There was no such response to tasseling and reproduction in corn. The smoothest temporal trend in seasonal σ_{HV}^o was illustrated for onion, where both NDVI and σ_{HV}^o increased rapidly with leaf growth and remained relatively stable through bulb growth and ripening.

This relation between σ_{HV}^o and NDVI has limitations. For example, a leaf area index (LAI, m2/m2) of 0.5 is the commonly
accepted threshold, above which the radar backscatter value is dominated by leaves rather than soil [63], and [9] reported that C-band SAR backscatter was sensitive to crop growth only while \(\text{LAI} < 4.6 \), although this is also dependent on canopy structure due to radar scattering sensitivity. Also, there may be differences in radar backscatter from crops with the same biomass (same NDVI) due to the difference in plant geometry [31]. This is particularly apparent for barley during heading and grain filling [Fig. 5(a)]. As a result, the correlation coefficient between a spline fit to the NDVI measurements (DOY 130–230 at 1-day intervals) with a spline fit of the \(\sigma^o_{HV} \) values was 0.76 and 0.77 for corn and onion, respectively, and only 0.27 for barley. Nonetheless, this relation between \(\sigma^o \) and NDVI is of particular interest because the leaf area is generally assumed to be correlated with final crop yield.

B. Soil Condition

A comparison of irrigated wheat with a nearby field of non-irrigated wheat offers a qualitative insight into the assumption that the radar backscatter from crops with moderate vegetation cover (e.g., \(\text{LAI} > 0.5 \)) is dominated by the contribution from vegetation rather than soil moisture or roughness (Fig. 6). In this case, the incidence angle range was limited to \(30^\circ - 35^\circ \) because images acquired at 40° and 41° did not include coverage of the nonirrigated wheat field. The nonirrigated wheat field received 57 mm of water from precipitation over the growing season, and the irrigated wheat field received 273 mm of water from irrigation and precipitation. It was estimated that the precipitation and supplemental irrigation in the irrigated wheat field replenished about 60% of the water lost through evapotranspiration (Table III).

First, of interest is the similarity in the time series of backscatter for the two fields. Both time series showed an increase in \(\sigma^o_{HH} \) and \(\sigma^o_{HV} \) associated with leaf growth, a peak \(\sigma^o_{HH} \) and \(\sigma^o_{HV} \) associated with heading, a dramatic drop in \(\sigma^o_{HH} \) and \(\sigma^o_{HV} \) after harvest, and an increase in the \(\sigma^o_{HV} - \sigma^o_{HH} \) difference with leaf jointing and wheat heading. Second, it was observed that, at the end of the season (after DOY 180), \(\sigma^o_{HH} \) and \(\sigma^o_{HV} \) were lower (more negative) for the irrigated than those for the nonirrigated field due likely to the fact that the nonirrigated field was rougher than the irrigated field. Third, during the period of full cover and irrigation (DOY 100–180), the backscatter from the irrigated wheat was either equal to \(\langle \sigma^o_{HV} \rangle \) or greater than \(\langle \sigma^o_{HH} \rangle \) that from the nonirrigated wheat. Although speculative, these results imply that both \(\sigma^o_{HH} \) and \(\sigma^o_{HV} \) are somewhat sensitive to soil moisture content (resulting in \(\sigma^o \) for irrigated wheat greater than or equal to that for nonirrigated wheat) and support the results reported for measurements in an anechoic chamber that, at C-band and at low/moderate incidence angles, the wheat backscatter was responsive to attenuated soil scattering [15]. Nonetheless, in this case (Fig. 6), the trend in \(\sigma^o \) was apparently dominated by the contribution from vegetation rather than the sensitivity to soil moisture differences, i.e., the largest change in backscatter occurred at harvest (going from full cover to stubble) rather than the small differences associated with irrigation and precipitation. However, it should be further noted that wheat stubble has been reported to affect

\[\text{SAR } \sigma^o \text{ to an extent determined by the type and amount of residue cover and the radar configuration [36, 37].} \]

C. Relative Sensitivity to Crop/Soil Condition and Satellite/Sensor Configuration

Based on visual interpretation of temporal trends in linearly quad-polarized \(\sigma^o \) (Figs. 3–6), one might conclude that there are three dominant influences on the amplitude of radar backscatter in irrigated crops: soil condition, crop condition, and sensor configuration (view direction and polarization). We have the opportunity here to quantify the behavior and relative dominance of these three influences for irrigated fields of wheat, barley, oat, onion, and corn at Barrax (Fig. 7). For this analysis, we focused on the difference between the dynamic range of \(\sigma^o (\Delta \sigma^o) \) for three polarizations and five crops under three conditions:

1) change in soil moisture: analysis of \(\Delta \sigma^o \) over 2 days before and after a significant rain event (DOY 238 and 261) when crop change was minimal (grains were already harvested, and corn and onion vegetation were at full cover) and two images were acquired at a steep incidence angle (\(\theta_i = 25^\circ \)) [Fig. 7(a)];

2) change in crop vegetation structure: analysis of \(\Delta \sigma^o \) over the entire AgriSAR field season (DOY 100–220) when crops were changing dramatically and eight images were acquired at a shallow incidence angle (\(\theta_i = 41^\circ \)) [Fig. 7(b)].
Fig. 7. Difference between maximum and minimum $\sigma^o (\Delta \sigma^o)$ for three polarizations and five crops—wheat, barley, oat, corn, and onion—under three conditions described in the text. (a) Change in soil moisture. (b) Change in crop vegetation structure. (c) Change in beam incidence angle. In frames (a) and (c), the crop growth stage is indicated with text, where cereal crops had been harvested and onion and corn were at full canopy cover. The alfalfa field was excluded from this analysis because it was not covered by the RADARSAT-2 images acquired after the harvest of grain crops and before the 24-day repeat. These events caused some low R^2 values for grain crops (undergoing jointing, heading, and harvest), moderate R^2 values for corn (with steady leaf growth and mid-season tasseling), and the highest R^2 values for onion (which had green vegetation through most of the season, with little change in σ_{HV}^o associated with bulb growth and ripening). The R^2 values for alfalfa were lowest due to the rapid and dramatic decrease in σ^o associated with frequent alfalfa harvests.

The ability of a 24-day acquisition frequency to capture the information of the average 3-day acquisition frequency was apparently dependent upon the crop type, time of year, and timing of the repeat cycle relative to rapidly changing crop and soil conditions [Fig. 8(a)]. To test if finer acquisition frequencies could capture more information, we computed the

HV cross-polarization σ_{HV}^o was consistently high for all crops, ranging from about 6 dB for the grain crops (wheat, barley, and corn) to greater than 8 dB for corn and onion. However, there was also an evidence that the copolarized backscatter might be best in some cases, i.e., the dynamic range of σ_{VV}^o was slightly greater than that for σ_{HV}^o for the wheat and barley fields, and the dynamic range of σ_{HH}^o was greater than that for σ_{HV}^o for the oat field.

Small day-to-day variations in SAR σ^o unrelated to changes in crop and soil conditions were explained by the variations in the RADARSAT-2 satellite/sensor orientation [Fig. 7(c)]. Again, σ_{HV}^o provided the most consistent results across all crops, with a dynamic range less than 4 dB (average 2 dB) for harvested fields of grain and fields with full-cover corn and onion. For these fields at Barrax, there was no apparent trend for the dynamic range associated with incidence angle to be more pronounced in fields of stubble versus fields of full-cover vegetation, as had been reported by others (e.g., [55]).
image acquisition frequencies ranging from 1 to 6 days and polarimetric modes from single- to quad-polarized were suggested depending on the goals of the mission (Table V). We found that quad-polarization with image acquisition frequency from 3–6 days was best suited for distinguishing crop types and for monitoring crop phenology, single- or dual-polarization with an acquisition frequency of 3–6 days was sufficient for mapping crop green biomass, and single- or dual-polarization with daily image acquisition was necessary to capture rapid changes in soil moisture condition. For all mission applications, a dense time series (acquisitions every 3–6 days) was required to discriminate variations in surface crop and soil conditions from differences induced by changes in satellite/sensor configuration.

IV. CONCLUSION

Related to the AgriSAR objective of deriving agricultural information from time series quad-polarized SAR products, it appeared that the temporal trend and overall amplitude of SAR quad-polarized σ^o could be related to crop and soil conditions. More specifically, for this paper, the following conclusions are derived.

1) The SAR backscatter was dominated by the vegetation response, although sensitive to the soil response, throughout most of the growing season.
2) The cross-polarized σ^o_{HV} was particularly useful for monitoring both crop and soil conditions and was found to be the most insensitive to differences in sensor view direction and beam incidence angle. At shallow incidence angles, σ^o_{HV} was the most sensitive polarization to changes in vegetation structure with crop seasonal growth and harvest.
3) The greatest separability of barley, corn, and onion occurred in spring after the barley had been harvested or in the narrow time window associated with grain crop heading when corn and onion were still immature.
4) The time series of σ^o offered reliable information about crop growth stage, such as jointing and heading in grain crops and leaf development and reproduction in corn and onion.
5) There was a positive correlation between RADARSAT-2 σ^o and RapidEye NDVI for onion and corn, where the percentage increase in σ^o was on the same order as the percentage increase in NDVI. This relation was complicated by plant geometry, resulting in a poor σ^o/NDVI relation during certain crop growth stages (e.g., wheat heading) and different σ^o/NDVI relations for different crop structures (barley versus corn versus onion).
6) For a limited study of pre- and postprecipitation conditions, the cross-polarization σ^o_{HV}, rather than copolarization σ^o_{HH} or σ^o_{VV}, was a better measure of soil moisture variation for sparsely vegetated fields.
7) The impact of view direction and incidence angle on the time series was minimal compared to the signal response to crop and soil conditions. Again, σ^o_{HV} had the lowest sensitivity of all polarizations to sensor configurations for crop fields at a variety of green leaf areas at Barrax.
TABLE V
SUGGESTED OPTIMUM ACQUISITION FREQUENCY AND POLARIMETRIC MODE BY MISSION MAPPING GOAL WITH JUSTIFICATION, BASED ON THE BARRAX 2009 ANALYSIS FOR 12 FIELDS OF SIX CROPS. NOTE: SUGGESTED POLARIMETRIC MODES ARE ABBREVIATED, WHERE QUAD-POL REFERS TO LINEAR QUAD-POLARIZATIONS HH+VV+HV+VH, DUAL-POL REFERS TO LINEAR DUAL-POLARIZATIONS HH+HV OR VV+VH, AND SINGLE-POL REFERS TO LINEAR SINGLE-POLARIZATIONS HH, VV, HV, OR VH

<table>
<thead>
<tr>
<th>Mission Mapping Goal</th>
<th>Suggested Polarimetric Mode</th>
<th>Suggested Acquisition Frequency</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop Type</td>
<td>Quad-Pol</td>
<td>3-6 days</td>
<td>The greatest discrimination of these 6 crops was related to narrow time windows of crop growth stage and harvest (e.g., Figure 4). Acquisitions every 3-6 days should allow 1-2 acquisitions within these windows.</td>
</tr>
<tr>
<td>Crop Growth Stage</td>
<td>Quad-Pol</td>
<td>3-6 days</td>
<td>Crop growth stage was determined by a significant deviation from the season-long trend of σ^o (e.g., Figure 4). Acquisitions every 3-6 days should provide context for this deviation.</td>
</tr>
<tr>
<td>Crop Green Biomass</td>
<td>Single- or Dual-Pol</td>
<td>3-6 days</td>
<td>Crop green biomass was positively correlated with σ^o but could be confounded by changes in phenology, soil moisture and soil roughness (e.g., Figure 5). Acquisitions every 3-6 days should discriminate changes in biomass from other soil and crop variations.</td>
</tr>
<tr>
<td>Surface Soil Moisture (for LAI<0.5)</td>
<td>Daily</td>
<td></td>
<td>The response of σ^o to surface soil moisture was large but of short duration. Daily acquisition frequency should capture these rapid changes.</td>
</tr>
</tbody>
</table>

Related to planning for Sentinel-1, we suggested image acquisition frequencies ranging from 1 to 6 days and polarimetric modes from single- to quad-polarized depending on the goals of the mission (Table V). Furthermore, the noise induced into the time series analysis by including multiple view directions and incidence angles was small compared to the information about crop and soil conditions gained by the dense time series of measurements. These results should be considered with the caveat that the study was limited to six crops with pivot irrigation and specific row direction and soil roughness.

With the knowledge gained in this analysis, the next steps will focus on several aspects. We will conduct a similar analysis of multitemporal quad-polarized data for individual fields at the other two AgriSAR experimental sites—Flevoland and Indian Head. The experiment at Barrax will be repeated to allow an interyear comparison that would enable generalizations to be made [51]. The 2009 RADARSAT-2 time series will be interpreted using a combined crop growth/radar backscatter modeling system supported by available optical images to best utilize the time series information for land monitoring (e.g., [2] and [45]).

REFERENCES

D. Wang, H. Lin, J. Chen, Y. Zhang, and Q. Zeng, “Application of...

M. Susan Moran received the Ph.D. degree in soil and water science from the University of Arizona, Tucson, in 1990.

She is currently a Hydrologist with the USDA Southwest Watershed Research Center, Tucson. She also holds an adjunct faculty appointment with the Department of Soil, Water and Environmental Science, University of Arizona, and is serving on the NASA Soil Moisture Active Passive Science Definition Team. Her research is focused on arid and semiarid regions, with a broad focus on the impact of land use and climate change on natural resources management and a specialized focus on the application of remote sensing.

Luis Alonso received the B.S. degree in physics and the M.Sc. degree in environmental physics (while working on the geometric correction of airborne and spaceborne remote sensing imagery) from the University of Valencia, Valencia, Spain, in 1999 and 2002, respectively.

He is a member of the Laboratory for Earth Observation, Image Processing Laboratory, University of Valencia, where he studies remote sensing of chlorophyll fluorescence at the canopy level. He has participated in several preparatory studies for FLEX candidate mission for ESA’s Earth Explorers as well as for GMES Sentinel-2 and Sentinel-3.

Jose F. Moreno received the Ph.D. degree in theoretical physics from the University of Valencia, Valencia, Spain.

He is currently a Professor of earth physics with the Faculty of Physics and the Head of the Laboratory for Earth Observation, Image Processing Laboratory–Scientific Park, University of Valencia. He is working on different national and international projects related to remote sensing and space research and on the development of data processing algorithms and multisource data integration studies, including optical/microwave synergy and imaging spectrometer data processing, for the modeling and monitoring of land surface processes, with special interest in numerical techniques for model inversion and data assimilation applied to remote sensing data. In 1995–1996, he was a Visiting Scientist with the NASA/Jet Propulsion Laboratory, Pasadena, CA. He has been involved in several European research networks and ESA and EC research projects. He is also involved in the Spanish mission SEOSAT within the ESA GMES programme, as chairman of the SEOSAT/Ingenio Mission Advisory Group. He has participated actively in the design and development of several experimental campaigns and studies within preparatory activities for several space missions. He coordinated the proposal for the Fluorescence Explorer (FLEX), a candidate ESA Earth Explorer Mission, and he is currently the Chairman of the FLEX Mission Advisory Group. He is regularly teaching remote sensing courses at the University of Valencia, including Ph.D. courses and Masters on remote sensing, space technologies, and applications. He is the author of many publications in the field, including several book chapters.

Dr. Moreno is a member of the European Space Agency Earth Sciences Advisory Committee, the International Space Station Users Panel, and other scientific advisory committees. He has served as an Associate Editor of the IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING.

Maria Pilar Cendronde Mateo received the M.S. degree from the University of Valencia, Valencia, Spain, in 2010. She is currently working toward the Ph.D. degree in the Department of Soil, Water and Environmental Sciences, University of Arizona, Tucson.

Her research is focused on plant fluorescence, with application to crop production and methods of remote sensing.

D. Fernando de la Cruz received the M.S. degree as an Agricultural Engineer from the Technical University of Madrid, Madrid, Spain, in 2000.

He is currently with the irrigation advisory service of the Provincial Agricultural Technical Institute (ITAP) in Albacete, Spain. His area of research is focused on the application of remote sensing for crop and water resources management in semiarid regions.

Amelia Montoro received the Ph.D. degree in agronomics from the University of Castilla La Mancha, Ciudad Real, Spain, in 2008.

She is currently a Postdoctoral Fellow with the South Australian Research and Development Institute, Adelaide, Australia. Her postdoctoral study is on the impact of temperature and water in grapevines. She is an Agronomist with the Instituto Técnico Agronómico Provincial (ITAP), Albacete, Spain, and also a Lecturer with the International Master of Irrigation Program of the Ministry of Agriculture in Spain. Her research interests are in the areas of irrigation scheduling, irrigation science, plant physiology, remote sensing, and farmers’ technology transfer.